Let us first find partial fractions of 1/((x-1)(x+1)^2) and for this let
1/((x-1)(x+1)^2)hArrA/(x-1)+B/(x+1)+C/(x+1)^2 or
1/((x-1)(x+1)^2)hArr(A(x+1)^2+B(x-1)(x+1)+C(x-1))/((x-1)(x+1)^2) or
1/((x-1)(x+1)^2)hArr(A(x^2+2x+1)+B(x^2-1)+C(x-1))/((x-1)(x+1)^2) or
1/((x-1)(x+1)^2)hArr((A+B)x^2+(2A+C)x+(A-B-C))/((x-1)(x+1)^2)
Therefore A+B=0 and 2A+C=0 and A-B-C=1
From these B=-A, C=-2A, Hence A-(-A)-(-2A)=1 or 4A=1
Hence A=1/4, B=-1/4 and C=-1/2
Hence int1/((x-1)(x+1)^2)dx
= int[1/(4(x-1))-1/(4(x+1))-1/(2(x+1)^2)]dx
= 1/4ln(x-1)-1/4ln(x+1)+1/(2(x+1))+c