How do you integrate #int 1/ [(x-1) ( x+ 1) ^2] # using partial fractions?

1 Answer
May 13, 2016

#int1/((x-1)(x+1)^2)dx#

= #1/4ln(x-1)-1/4ln(x+1)+1/(2(x+1))+c#

Explanation:

Let us first find partial fractions of #1/((x-1)(x+1)^2)# and for this let

#1/((x-1)(x+1)^2)hArrA/(x-1)+B/(x+1)+C/(x+1)^2# or

#1/((x-1)(x+1)^2)hArr(A(x+1)^2+B(x-1)(x+1)+C(x-1))/((x-1)(x+1)^2)# or

#1/((x-1)(x+1)^2)hArr(A(x^2+2x+1)+B(x^2-1)+C(x-1))/((x-1)(x+1)^2)# or

#1/((x-1)(x+1)^2)hArr((A+B)x^2+(2A+C)x+(A-B-C))/((x-1)(x+1)^2)#

Therefore #A+B=0# and #2A+C=0# and #A-B-C=1#

From these #B=-A#, #C=-2A#, Hence #A-(-A)-(-2A)=1# or #4A=1#

Hence #A=1/4#, #B=-1/4# and #C=-1/2#

Hence #int1/((x-1)(x+1)^2)dx#

= #int[1/(4(x-1))-1/(4(x+1))-1/(2(x+1)^2)]dx#

= #1/4ln(x-1)-1/4ln(x+1)+1/(2(x+1))+c#