How do you integrate int (1-x^2)/((x+1)(x-5)(x+2)) 1x2(x+1)(x5)(x+2) using partial fractions?

1 Answer
Dec 27, 2016

The answer is =-4/7ln(∣x-5∣)-3/7ln(∣x+2∣)+ C=47ln(x5)37ln(x+2)+C

Explanation:

1-x^2=(1+x)(1-x)1x2=(1+x)(1x)

Let's rewrite the expression

(1-x^2)/((x+1)(x-5)(x+2))=(cancel(1+x)(1-x))/(cancel(x+1)(x-5)(x+2))

Now we can do the decomposition into partial fractions

(1-x)/((x-5)(x+2))=A/(x-5)+B/(x+2)

=(A(x+2)+B(x-5))/((x-5)(x+2))

Therefore,

1-x=A(x+2)+B(x-5)

Let x=-2, =>, 3=-7B, =>, B=-3/7

Let x=5, =>, -4=7A, =>, A=-4/7

So,

(1-x)/((x-5)(x+2))=(-4/7)/(x-5)+(-3/7)/(x+2)

Therefore,

int((1-x)dx)/((x-5)(x+2))=int((-4/7)dx)/(x-5)+int((-3/7)dx)/(x+2

=-4/7ln(∣x-5∣)-3/7ln(∣x+2∣)+ C