How do you integrate int (1-x^2)/((x+8)(x-5)(x+2)) 1x2(x+8)(x5)(x+2) using partial fractions?

1 Answer
Nov 4, 2016

The answer is =-21/26ln(x+8)-24/91ln(x-5)+1/14ln(x+2)+C=2126ln(x+8)2491ln(x5)+114ln(x+2)+C

Explanation:

Let's start by the decomposition into partial fractions
(1-x^2)/((x+8)(x-5)(x+2))=A/(x+8)+B/(x-5)+C/(x+2)1x2(x+8)(x5)(x+2)=Ax+8+Bx5+Cx+2
Upon simplification
1-x^2=A(x-5)(x+2)+B(x+8)(x+2)+C(x+8)(x-5)1x2=A(x5)(x+2)+B(x+8)(x+2)+C(x+8)(x5)
Let x=5x=5=>-24=91B24=91B=>B=-24/91B=2491
Let x=-2x=2=>-3=-42C3=42C=>C=1/14C=114
Let x=-8x=8=>-63=78A63=78A=>A=-21/26A=2126
int((1-x^2)dx)/((x+8)(x-5)(x+2))=int(-21/26dx)/(x+8)+int(-24/91dx)/(x-5)+int(1/14dx)/(x+2)(1x2)dx(x+8)(x5)(x+2)=2126dxx+8+2491dxx5+114dxx+2
=-21/26ln(x+8)-24/91ln(x-5)+1/14ln(x+2)+C=2126ln(x+8)2491ln(x5)+114ln(x+2)+C