How do you integrate int (1-x^2)/((x-9)(x-2)(x-2)) 1x2(x9)(x2)(x2) using partial fractions?

1 Answer
Nov 14, 2017

31/49*Ln(x-2)-80/49*ln(x-9)-3/7*(x-2)^(-1)+C3149ln(x2)8049ln(x9)37(x2)1+C

Explanation:

I partitioned integrand into basic fractions,

(1-x^2)/[(x-9)*(x-2)^2]=A/(x-9)+B/(x-2)+C/(x-2)^21x2(x9)(x2)2=Ax9+Bx2+C(x2)2

After expanding denominator,

A*(x-2)^2+B*(x-2)(x-9)+C*(x-9)=1-x^2A(x2)2+B(x2)(x9)+C(x9)=1x2

After setting x=2x=2, -7C=-37C=3, so C=3/7C=37

After setting x=9x=9, 49A=-8049A=80, so A=-80/49A=8049

After setting x=1x=1, A+8B-8C=0A+8B8C=0, so B=1/8*(8C-A)=31/49B=18(8CA)=3149

Thus,

int (1-x^2)/[(x-9)*(x-2)^2]*dx1x2(x9)(x2)2dx

=-80/49*int (dx)/(x-9)+31/49*int (dx)/(x-2)+3/7*int (dx)/(x-2)^28049dxx9+3149dxx2+37dx(x2)2

=31/49*Ln(x-2)-80/49*ln(x-9)-3/7*(x-2)^(-1)+C3149ln(x2)8049ln(x9)37(x2)1+C