How do you integrate 1x2(x9)(x+3)(x2) using partial fractions?

1 Answer
Apr 17, 2017

1x2(x9)(x+3)(x2)dx

=2021ln|x9|215ln|x+3|+335ln|x2|+C

Explanation:

1x2(x9)(x+3)(x2)=Ax9+Bx+3+Cx2

Use Oliver Heaviside's cover up method to find:

A=1(9)2((9)+3)((9)2)=80(12)(7)=2021

B=1(3)2((3)9)((3)2)=8(12)(5)=215

C=1(2)2((2)9)((2)+3)=3(7)(5)=335

So:

1x2(x9)(x+3)(x2)dx

=2021(1x9)215(1x+3)+335(1x2)dx

=2021ln|x9|215ln|x+3|+335ln|x2|+C