How do you integrate ∫1−x2(x−9)(x+3)(x−2) using partial fractions?
1 Answer
Apr 17, 2017
=−2021ln|x−9|−215ln|x+3|+335ln|x−2|+C
Explanation:
1−x2(x−9)(x+3)(x−2)=Ax−9+Bx+3+Cx−2
Use Oliver Heaviside's cover up method to find:
A=1−(9)2((9)+3)((9)−2)=−80(12)(7)=−2021
B=1−(−3)2((−3)−9)((−3)−2)=−8(−12)(−5)=−215
C=1−(2)2((2)−9)((2)+3)=−3(−7)(5)=335
So:
∫1−x2(x−9)(x+3)(x−2)dx
=∫−2021(1x−9)−215(1x+3)+335(1x−2)dx
=−2021ln|x−9|−215ln|x+3|+335ln|x−2|+C