How do you integrate int 1/[(x^3)-1] using partial fractions?

1 Answer
Oct 31, 2016

The integral is 1/3ln(x-1)-1/6ln(x^2+x+1)-1/(sqrt3)arctan((2x+1)/sqrt3)

Explanation:

Let's factorise the denominator
x^3-1=(x-1)(x^2+x+1)
and the decomposition in partial fractions
1/(x^3-1)=A/(x-1)+(Bx+C)/(x^2+x+1)
1=A(x^2+x+1)+ (Bx+C)(x-1)
If x=0=>1=A-C
coefficients of x^2, 0=A+B
Coefficients of x, 0=A-B+C
Solving, we found A=1/3, B=-1/3, C=-2/3
so intdx/(x^3-1)=1/3intdx/(x-1)-1/3int((x+2)dx)/(x^2+x+1)
intdx/(x-1)=ln(x-1)
int((x+2)dx)/(x^2+x+1)=1/2int((2x+1)dx)/(x^2+x+1)+3/2intdx/(x^2+x+1)
1/2int((2x+1)dx)/(x^2+x+1)=1/2ln(x^2+x+1)
intdx/(x^2+x+1)=intdx/((x+1/2)^2+3/4)
let's do the substitution,u=(2x+1)/sqrt3=>(du)/dx=2/sqrt3
intdx/((x+1/2)^2+3/4)=2/sqrt3int(du)/(u^2+1)=2/sqrt3arctanu