How do you integrate 13x6x2+5x6 using partial fractions?

1 Answer
Jun 14, 2016

23ln(|3x2|)+32ln(|2x+3|)+C

Explanation:

Note that

6x2+5x6=6x2+9x4x6

=3x(2x+3)2(2x+3)

=(3x2)(2x+3)

The partial fraction decomposition can then be set up as:

13x(3x2)(2x+3)=A3x2+B2x+3

Multiplying both sides by (3x2)(2x+3), we see that

13x=A(2x+3)+B(3x2)

Letting x=32:

13(32)=A(2(32)+3)+B(3(32)2)

392=A(3+3)+B(922)

392=B(132)

3=B

Letting x=23:

13(23)=A(2(23)+3)+B(3(23)2)

263=A(43+3)+B(22)

263=A(133)

2=A

Thus,

13x(3x2)(2x+3)=23x2+32x+3

So,

13x6x2+5x6dx=213x2dx+312x+3dx

=2333x2dx+3222x+3dx

=23ln(|3x2|)+32ln(|2x+3|)+C