How do you integrate ∫13x6x2+5x−6 using partial fractions?
1 Answer
Jun 14, 2016
Explanation:
Note that
6x2+5x−6=6x2+9x−4x−6
=3x(2x+3)−2(2x+3)
=(3x−2)(2x+3)
The partial fraction decomposition can then be set up as:
13x(3x−2)(2x+3)=A3x−2+B2x+3
Multiplying both sides by
13x=A(2x+3)+B(3x−2)
Letting
13(−32)=A(2(−32)+3)+B(3(−32)−2)
−392=A(−3+3)+B(−92−2)
−392=B(−132)
3=B
Letting
13(23)=A(2(23)+3)+B(3(23)−2)
263=A(43+3)+B(2−2)
263=A(133)
2=A
Thus,
13x(3x−2)(2x+3)=23x−2+32x+3
So,
∫13x6x2+5x−6dx=2∫13x−2dx+3∫12x+3dx
=23∫33x−2dx+32∫22x+3dx
=23ln(|3x−2|)+32ln(|2x+3|)+C