Factorize the denominator:
(1-x^3) = (1-x)(1+x+x^2)(1−x3)=(1−x)(1+x+x2)
Write the integrand as:
x/(1-x^3) = A/(1-x)+ (Bx+C)/(1+x+x^2)x1−x3=A1−x+Bx+C1+x+x2
x/(1-x^3) = (A(1+x+x^2)+(Bx+C)(1-x))/((1-x)(1+x+x^2))x1−x3=A(1+x+x2)+(Bx+C)(1−x)(1−x)(1+x+x2)
As the denominators are equal, so must be the numerators:
x = A+Ax+Ax^2+Bx+C-Bx^2-Cxx=A+Ax+Ax2+Bx+C−Bx2−Cx
x = (A-B)x^2 + (A+B-C)x+(A+C)x=(A−B)x2+(A+B−C)x+(A+C)
and equating the coefficients of the same degree in xx:
{(A-B=0),(A+B-C=1),(A+C=0):}
{(A=B),(2A-C=1),(C=-A):}
{(A=1/3),(B=1/3),(C=-1/3):}
Then:
x/(1-x^3) = 1/3 1/(1-x)+ 1/3 (x-1)/(1+x+x^2)
and:
int (2x)/(1-x^3)dx = 2/3int dx/(1-x) +2/3int (x-1)/(1+x+x^2)dx
Solve separately the integrals:
2/3int dx/(1-x) = - 2/3int (d(1-x))/(1-x) = - 2/3ln abs (1-x) + C_1
Split the other noting that d(1+x+x^2) = 1+2x:
2/3int (x-1)/(1+x+x^2)dx = 1/3 int (2x+1-3)/(1+x+x^2)dx
2/3int (x-1)/(1+x+x^2)dx = 1/3int (2x+1)/(1+x+x^2)dx - int 1/(1+x+x^2)dx
Now solve:
1/3int (2x+1)/(1+x+x^2)dx = 1/3int (d(1+x+x^2))/(1+x+x^2) = 1/3ln abs (1+x+x^2) + C_2
and finally:
int 1/(1+x+x^2)dx = int dx/(3/4+ (x+1/2)^2)
int 1/(1+x+x^2)dx = 4/3 int dx/(1+ ((2x+1)/sqrt3)^2)
int 1/(1+x+x^2)dx = 2/sqrt3 int (d((2x+1)/sqrt3))/(1+ ((2x+1)/sqrt3)^2)
int 1/(1+x+x^2)dx = 2/sqrt3 arctan((2x+1)/sqrt3)+C_3
Putting it all together:
int (2x)/(1-x^3)dx = -2/3 ln abs (1-x) +1/3 ln abs (1+x+x^2) -2/sqrt3arctan((2x+1)/sqrt3)+C