Let's do the decomposition into partial fractions
#(2x+1)/((x-4)(x-1)(x+7))=A/(x-4)+B/(x-1)+C/(x+7)#
#=(A(x-1)(x+7)+B(x-4)(x+7)+C(x-1)(x-4))/((x-4)(x-1)(x+7))#
Therefore,
#2x+1=A(x-1)(x+7)+B(x-4)(x+7)+C(x-1)(x-4)#
Let #x=1#, #=>#,#3=-24B#, #=>#, #B=-1/8#
Let #x=4#, #=>#,#9=33A#, #=>#, #A=3/11#
Let #x=-7#, #=>#, #-13=88C#, #=>##C=-13/88#
So,
#(2x+1)/((x-4)(x-1)(x+7))=(3/11)/(x-4)-(1/8)/(x-1)-(13/88)/(x+7)#
#int((2x+1)dx)/((x-4)(x-1)(x+7))=3/11intdx/(x-4)-1/8intdx/(x-1)-13/88intdx/(x+7)#
#=3/11ln(∣x-4∣)-1/8ln(∣x-1∣)-13/88ln(∣x+7∣)+C#