How do you integrate int (2x^2+9x-6) / (x^2+x-6)2x2+9x6x2+x6 using partial fractions?

1 Answer
Dec 18, 2016

The answer is =2x+3ln(∣x+3∣)+4ln(∣x-2∣)+C=2x+3ln(x+3)+4ln(x2)+C

Explanation:

We need to simplify the expression

The denominator is x^2+x-6=(x+3)(x-2)x2+x6=(x+3)(x2)

Let's do a long division

color(white)(aaaa)aaaa2x^2+9x-62x2+9x6color(white)(aaaa)aaaax^2+x-6x2+x6

color(white)(aaaa)aaaa2x^2+2x-122x2+2x12color(white)(aaaa)aaaa22

color(white)(aaaaaa)aaaaaa0+7x+60+7x+6

(2x^2+9x-6)/(x^2+x-6)=2+(7x+6)/(x^2+x-6)2x2+9x6x2+x6=2+7x+6x2+x6

We can now do the decomposition into partial fractions

(2x+6)/(x^2+x-6)=(7x+6)/((x+3)(x-2))2x+6x2+x6=7x+6(x+3)(x2)

=A/(x+3)+B/(x-2)=Ax+3+Bx2

=(A(x-2)+B(x+3))/((x+3)(x-2))=A(x2)+B(x+3)(x+3)(x2)

Therefore,

7x+6=A(x-2)+B(x+3)7x+6=A(x2)+B(x+3)

Let x=2x=2, =>. 20=5B20=5B, =>, B=4B=4

Let x=-3x=3, =>, -15=-5A15=5A, =>, A=3A=3

(2x^2+9x-6)/(x^2+x-6)=2+(7x+6)/(x^2+x-6)=2+3/(x+3)+4/(x-2)2x2+9x6x2+x6=2+7x+6x2+x6=2+3x+3+4x2

int((2x^2+9x-6)dx)/(x^2+x-6)=int2dx+3intdx/(x+3)+4intdx/(x-2)(2x2+9x6)dxx2+x6=2dx+3dxx+3+4dxx2

=2x+3ln(∣x+3∣)+4ln(∣x-2∣)+C=2x+3ln(x+3)+4ln(x2)+C