How do you integrate int (2x-2)/(x^2 - 6x +10)^(1/2)dx using partial fractions?

1 Answer
Nov 22, 2015

[2sqrt(x^2-6x+10)]+[4arcsinh(x-3)]+C

Explanation:

int (2x-2)/sqrt(x^2 - 6x +10)dx

int (2x-6+4)/sqrt(x^2 - 6x +10)dx

int (2x-6)/sqrt(x^2 - 6x +10)dx+4int1/sqrt(x^2-6x+10)dx

For the first integral let's u = x^2-6x+10

du = 2x-6 dx

we have int1/sqrt(u)du

which is [2sqrt(u)]

complete the square for the second

x^2-6x+10 = x^2-6x+10 + 9 - 9 = (x-3)^2+1

[2sqrt(x^2-6x+10)]+4int1/sqrt((x-3)^2+1)dx

let's t = x-3

dt = dx

[2sqrt(x^2-6x+10)]+4int1/sqrt(t^2+1)dx

[2sqrt(x^2-6x+10)]+[4arcsinh(x-3)]+C