How do you integrate int (2x-2)/((x^4-1)(x-3))dx2x2(x41)(x3)dx using partial fractions?

1 Answer
Mar 2, 2017

int(2x-2)/((x^4-1)(x-3))dx=-1/4ln|x+1|+1/10ln(x^2+1)-2/5tan^(-1)x+1/20ln|x-3|2x2(x41)(x3)dx=14ln|x+1|+110ln(x2+1)25tan1x+120ln|x3|

Explanation:

Let us first obtain partial fractions of (2x-2)/((x^4-1)(x-3))2x2(x41)(x3) and as x^4-1=(x+1)(x-1)(x^2+1)x41=(x+1)(x1)(x2+1), these will be

(2x-2)/((x^4-1)(x-3))=(2(x-1))/((x+1)(x-1)(x^2+1)(x-3))=2/((x+1)(x^2+1)(x-3))2x2(x41)(x3)=2(x1)(x+1)(x1)(x2+1)(x3)=2(x+1)(x2+1)(x3)

and this can be expressed as

2/((x+1)(x^2+1)(x-3))=A/(x+1)+(Bx+C)/(x^2+1)+D/(x-3)2(x+1)(x2+1)(x3)=Ax+1+Bx+Cx2+1+Dx3

2=A(x-3)(x^2+1)+(Bx+C)(x+1)(x-3)+D(x+1)(x^2+1)2=A(x3)(x2+1)+(Bx+C)(x+1)(x3)+D(x+1)(x2+1)

putting x=-1x=1 and x=3x=3 in this we get

2=-8A2=8A i.e. A=-1/4A=14 and 40D=240D=2 i.e. D=1/20D=120

and comparing coefficients of x^3x3 and constant term,

we have, 0=A+B+D0=A+B+D i.e. B=-A-D=1/4-1/20=4/20=1/5B=AD=14120=420=15

and 2=-3A-3C+D2=3A3C+D or 3C=-2-3(-1/4)+1/20=-2+3/4+1/20=(-24)/20=-6/53C=23(14)+120=2+34+120=2420=65 and C=-2/5C=25 and

2/((x+1)(x^2+1)(x-3))=-1/(4(x+1))+(x-2)/(5(x^2+1))+1/(20(x-3))2(x+1)(x2+1)(x3)=14(x+1)+x25(x2+1)+120(x3)

and int(2x-2)/((x^4-1)(x-3))dx2x2(x41)(x3)dx

= int-1/(4(x+1))dx+int(x-2)/(5(x^2+1))dx+int1/(20(x-3))dx14(x+1)dx+x25(x2+1)dx+120(x3)dx

= int-1/(4(x+1))dx+1/5(intx/(x^2+1)dx-int2/(x^2+1)dx)+int1/(20(x-3))dx14(x+1)dx+15(xx2+1dx2x2+1dx)+120(x3)dx

= -1/4ln|x+1|+1/5(1/2ln(x^2+1)-2tan^(-1)x)+1/20ln|x-3|14ln|x+1|+15(12ln(x2+1)2tan1x)+120ln|x3|

= -1/4ln|x+1|+1/10ln(x^2+1)-2/5tan^(-1)x+1/20ln|x-3|14ln|x+1|+110ln(x2+1)25tan1x+120ln|x3|