First, you need to write out the partial fractions. The denominator has already been factorized for you.
#frac{2x - 4}{(x - 4)(x + 3)(x - 6)} -= frac{A}{x - 4} + frac{B}{x + 3} + frac{C}{x - 6}#
Where #A#, #B# and #C# are constants to be determined. Note that the sign #-=# means that the equality holds true for all possible values of #x#. Get rid of the denominators by multiplying both sides with #(x - 4)(x + 3)(x - 6)#.
#2x - 4 -= A(x + 3)(x - 6) + B(x - 4)(x - 6) + C(x - 4)(x + 3)#
When #x = 4#
#2(4) - 4 = A(4 + 3)(4 - 6)#
#A = -2/7#
When #x = -3#
#2(-3) - 4 = B(-3 - 4)(-3 - 6)#
#B = -10/63#
When #x = 6#
#2(6) - 4 = C(6 - 4)(6 + 3)#
#C = 4/9#
Therefore,
#frac{2x - 4}{(x - 4)(x + 3)(x - 6)} -= -frac{2/7}{x - 4} - frac{10/63}{x + 3} + frac{4/9}{x - 6}#.
Now, we proceed with the integration.
#int frac{2x - 4}{(x - 4)(x + 3)(x - 6)} dx = int (-frac{2/7}{x - 4} - frac{10/63}{x + 3} + frac{4/9}{x - 6}) dx#
#= -2/7 int frac{1}{x - 4} dx - 10/63 int frac{1}{x + 3} dx + 4/9 int frac{1}{x - 6} dx#
#= -2/7 ln|x - 4| - 10/63 ln|x + 3| + 4/9 ln|x - 6| + C#,
where #C# is the constant of integration.