How do you integrate int (2x-5) / (x^2 -4x+ 5)2x5x24x+5 using partial fractions?

1 Answer
Aug 11, 2016

int (2x-5)/(x^2-4x+5)=l n(|x^2-4x+5|-arc tan(x-2))+C2x5x24x+5=ln(x24x+5arctan(x2))+C

Explanation:

int (2x-5)/(x^2-4x+5)2x5x24x+5

2x-5=2x-4-12x5=2x41

int (2x-5)/(x^2-4x+5)=int (2x-4-1)/(x^2-4x+5)d x2x5x24x+5=2x41x24x+5dx

"split the integration"split the integration

int (2x-5)/(x^2-4x+5)=color(red)(int (2x-4)/(x^2-4x+5)d x)-color(green)(int1/(x^2-4x+5)d x) 2x5x24x+5=2x4x24x+5dx1x24x+5dx

color(red)(int (2x-4)/(x^2-4x+5)d x)2x4x24x+5dx

"Substitute "u=x^2-4x+5" ; " d u=2x-4Substitute u=x24x+5 ; du=2x4

color(red)(int (2x-4)/(x^2-4x+5)d x)=int (d u)/u=l n u2x4x24x+5dx=duu=lnu

"Undo substitution"Undo substitution

color(red)(int (2x-4)/(x^2-4x+5)d x)=l n(|x^2-4x+5|)2x4x24x+5dx=ln(x24x+5)

color(green)(int1/(x^2-4x+5)d x)=1x24x+5dx=

x^2-4x+5=(x-2)^2+1x24x+5=(x2)2+1

"please remember that "int (d x)/(x^2+a^2)=1/a arc tan (x/a)+Cplease remember that dxx2+a2=1aarctan(xa)+C

color(green)(int1/(x^2-4x+5)d x)=int (d x)/((x-2)^2+1)=arc tan (x-2)1x24x+5dx=dx(x2)2+1=arctan(x2)

int (2x-5)/(x^2-4x+5)=l n(|x^2-4x+5|-arc tan(x-2))+C2x5x24x+5=ln(x24x+5arctan(x2))+C