How do you integrate int 3/((1 + x)(1 - 2x)) using partial fractions?

1 Answer
Jan 6, 2017

See below.

int3/((1+x)(1-2x))=ln(|1+x|)-ln(|1-2x|)+C

Explanation:

The denominator is already factored.

=>3/((1+x)(1-2x))=A/(1+x)+B/(1-2x)

Multiply through by the denominator of the left-hand side:

(1+x)(1-2x)[3/(cancel((1+x)(1-2x)))=A/cancel(1+x)+B/cancel(1-2x)]

=>3=A(1-2x)+B(1+x)

The next step is to solve for A and B. One way to do this is to pick values for x which will cancel each variable.

x=1/2

3=cancel(A*0)+3/2B

B=2

x=-1

3=A(1-(-2))+cancel(B*0)

3=3A

A=1

We put these values back into our partial fractions and replace as the integrand.

int(1)/(1+x)+2/(1-2x)dx

Technically, you should use a substitution before integrating. Split up the integral.

int1/(1+x)dx+2int1/(1-2x)dx

For the first integral, u=1+x, du=dx
For the second integral, z=1-2x, dz=-2dx=>-1/2dz=dx

int1/udu-int1/zdz

Integrate.

ln(|u|)-ln(|z|)+C

Substitute back in.

ln(|1+x|)-ln(|1-2x|)+C

Note: the absolute value signs account for the domain of the natural log function (x>0).

By the properties of logarithms, you may also write the final answer as:

ln(|(1+x)/(1-2x)|)+C