How do you integrate int (3x^2 - 1) /( ((x^2)+2) (x-3))3x21((x2)+2)(x3) using partial fractions?

1 Answer
Aug 17, 2016

26/11ln|x-3|+7/22ln(x^2+2)+21/(11sqrt2)tan^(-1)(x/sqrt2)+K2611ln|x3|+722ln(x2+2)+21112tan1(x2)+K.

Explanation:

We split the Integrand as :
(3x^2-1)/((x^2+2)(x-3))=A/(x-3)+(Bx+C)/(x^2+2),......................(star)
where, A,B,C in RR.

A can be quickly determined by Heavyside"s Cover-up Method as

A=[(3x^2-1)/(x^2+2)]_(x=3)=26/11

Simplifying (star) & comparing rational polys. on both sides, we get,
A(x^2+2)+(Bx+C)(x-3)=3x^2-1.....................(1)

Taking x=0, &, A=26/11 in (1),
26/11(2)+C(-3)=-1rArrC=21/11.

(1), x=1, A=26/11, C=21/11
rArr26/11(3)+(B+21/11)(-2)=2rArrB=7/11.

With these A,B,C, we have, int(3x^2-1)/((x^2+2)(x-3))dx,

=26/11int1/(x-3)dx+1/11int(7x+21)/(x^2+2)dx,

=26/11ln|x-3|+7/11*1/2int(2x)/(x^2+2)dx+21/11int1/(x^2+2)dx,

=26/11ln|x-3|+7/22int(d(x^2+2))/(x^2+2)+21/11*1/sqrt2*tan^(-1)(x/sqrt2),

=26/11ln|x-3|+7/22ln(x^2+2)+21/(11sqrt2)tan^(-1)(x/sqrt2)+K.

Enjoy Maths!