How do you integrate int (3x^2-2x+5)/(x^2+1)^23x22x+5(x2+1)2 using partial fractions?

2 Answers
Jun 11, 2017

int (3x^2-2x+5)/(x^2+1)^2 dx = 4arctanx + (x+1)/(x^2+1) +C3x22x+5(x2+1)2dx=4arctanx+x+1x2+1+C

Explanation:

Write the numerator as:

3x^2-2x+5 = 3(x^2+1) -2x +23x22x+5=3(x2+1)2x+2

so that:

int (3x^2-2x+5)/(x^2+1)^2 dx = 3int dx/(1+x^2) - int (2xdx)/(x^2+1)^2 +2 int dx/(x^2+1)^23x22x+5(x2+1)2dx=3dx1+x22xdx(x2+1)2+2dx(x2+1)2

Now solve the integral separately:

int dx/(1+x^2) = arctanx + C_1dx1+x2=arctanx+C1

int (2xdx)/(x^2+1)^2 = int (d(x^2+1))/(x^2+1)^2 = -1/(x^2+1)+C_22xdx(x2+1)2=d(x2+1)(x2+1)2=1x2+1+C2

The third integral can be resolved by substituting:

x=tantx=tant

dx = dt/cos^2tdx=dtcos2t

int dx/(x^2+1)^2 = int dt/(cos^2t(1+tan^2t)^2)dx(x2+1)2=dtcos2t(1+tan2t)2

use now the identity:

1+tan^2t = 1/cos^2t1+tan2t=1cos2t

int dx/(x^2+1)^2 = int dt/(cos^2t/cos^4t) = int cos^2tdtdx(x2+1)2=dtcos2tcos4t=cos2tdt

and as cos^2t = (1+cos2t)/2cos2t=1+cos2t2

int dx/(x^2+1)^2 = 1/2 int dt + 1/2 int cos(2t)dtdx(x2+1)2=12dt+12cos(2t)dt

int dx/(x^2+1)^2 = t/2 + 1/4 int cos(2t)d(2t)dx(x2+1)2=t2+14cos(2t)d(2t)

int dx/(x^2+1)^2 = t/2 + sin(2t)/4+C_3dx(x2+1)2=t2+sin(2t)4+C3

Use now the parametric formula:

sin(2t) = (2tant)/(1+tan^2t)sin(2t)=2tant1+tan2t

to undo the substitution:

int dx/(x^2+1)^2 = arctanx/2 + 1/2x/(1+x^2)+C_3dx(x2+1)2=arctanx2+12x1+x2+C3

Putting it together:

int (3x^2-2x+5)/(x^2+1)^2 dx = 3arctanx +1/(x^2+1) + 2(arctanx/2 + 1/2x/(1+x^2))+C3x22x+5(x2+1)2dx=3arctanx+1x2+1+2(arctanx2+12x1+x2)+C

int (3x^2-2x+5)/(x^2+1)^2 dx = 4arctanx + (x+1)/(x^2+1) +C3x22x+5(x2+1)2dx=4arctanx+x+1x2+1+C

Jun 12, 2017

This answer will only look at the partial fraction decomposition of the integrand as its integral has already been evaluated in the other answer.

Explanation:

(3x^2-2x+5)/(x^2+1)^2-=(A+Bx)/(x^2+1)+(C+Dx)/(x^2+1)^23x22x+5(x2+1)2A+Bxx2+1+C+Dx(x2+1)2

3x^2-2x+5=(A+Bx)(x^2+1)+C+Dx3x22x+5=(A+Bx)(x2+1)+C+Dx

3x^2-2x+5=A+Ax^2+Bx^3+(B+D)x+C3x22x+5=A+Ax2+Bx3+(B+D)x+C

Compare coefficients of all xx-terms

5=A+C5=A+C (1)

-2=B+D2=B+D (2)

3=A3=A (3)

0=B0=B (4)

Sub (4) into (2) and (3) into (1)

-2=D2=D

5=3+C rArr C=25=3+CC=2

(3x^2-2x+5)/(x^2+1)^2=3/(x^2+1)+(2-2x)/(x^2+1)^23x22x+5(x2+1)2=3x2+1+22x(x2+1)2

This can be rewritten as:

3/(x^2+1)-(2(x-1))/(x^2+1)^23x2+12(x1)(x2+1)2

int3/(x^2+1)-(2(x-1))/(x^2+1)^23x2+12(x1)(x2+1)2 dx= 4arctanx + (x+1)/(x^2+1) +"c"dx=4arctanx+x+1x2+1+c