How do you integrate int (3x)/((x + 2)(x - 1)) using partial fractions?
1 Answer
Dec 10, 2016
Explanation:
The partial fraction decomposition of the integrand will be of the form:
(3x)/((x+2)(x-1)) = A/(x+2) + B/(x-1)
" " = (A(x-1) + B(x+2))/((x+2)(x-1))
:. 3x" " = A(x-1) + B(x+2)
Put
Put
Hence,
(3x)/((x+2)(x-1)) = 2/(x+2) + 1/(x-1)
And so:
int(3x)/((x+2)(x-1)) = int(2/(x+2) + 1/(x-1))dx
" "= 2int 1/(x+2)dx + int 1/(x-1)dx
" "= 2ln|x+2|+ln|x-1| + c
" "= ln(|x+2|)^2+ln|x-1| + lnA (c=lnA )
" "= ln(A(x+2)^2|x-1|)