How do you integrate int (3x)/((x + 2)(x - 1)) using partial fractions?

1 Answer
Dec 10, 2016

int(3x)/((x+2)(x-1)) = ln(A(x+2)^2|x-1|)

Explanation:

The partial fraction decomposition of the integrand will be of the form:

(3x)/((x+2)(x-1)) = A/(x+2) + B/(x-1)
" " = (A(x-1) + B(x+2))/((x+2)(x-1))
:. 3x" " = A(x-1) + B(x+2)

Put x=-2 => -6=A(-3) => A=2
Put x=1 " "=> 3=B(3) " "=> B=1

Hence,

(3x)/((x+2)(x-1)) = 2/(x+2) + 1/(x-1)

And so:

int(3x)/((x+2)(x-1)) = int(2/(x+2) + 1/(x-1))dx
" "= 2int 1/(x+2)dx + int 1/(x-1)dx
" "= 2ln|x+2|+ln|x-1| + c
" "= ln(|x+2|)^2+ln|x-1| + lnA (c=lnA)
" "= ln(A(x+2)^2|x-1|)