How do you integrate ∫4x−1x2(x−4) using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Shwetank Mauria Aug 3, 2016 ∫4x−1x2(x−4)dx=−1516lnx−14x+1516ln(x−4) Explanation: Partial fractions of 4x−1x2(x−4) will be of type Ax+Bx2+Cx−4 i.e. 4x−1x2(x−4)⇔Ax+Bx2+Cx−4 or ⇔Ax(x−4)+B(x−4)+Cx2x2(x−4) or ⇔Ax2−4Ax+Bx−4B+Cx2x2(x−4) or 4x−1x2(x−4)⇔(A+C)x2+x(−4A+B)−4Bx2(x−4) Hence A+C=0, −4A+B=4 and 4B=1 i.e. B=14, −4A=4−14=154 or A=−1516 and C=1516 and 4x−1x2(x−4)⇔−1516x+14x2+1516(x−4) Hence ∫4x−1x2(x−4)dx⇔∫−1516xdx+∫14x2dx+∫1516(x−4)dx = −1516lnx−14x+1516ln(x−4) Answer link Related questions How do I find the partial fraction decomposition of 2x(x+3)(3x+1) ? How do I find the partial fraction decomposition of 1x3+2x2+x ? How do I find the partial fraction decomposition of x4+1x5+4x3 ? How do I find the partial fraction decomposition of x4x4−1 ? How do I find the partial fraction decomposition of t4+t2+1(t2+1)(t2+4)2 ? How do I find the integral ∫t2t+4dt ? How do I find the integral ∫x−9(x+5)(x−2)dx ? How do I find the integral ∫1(w−4)(w+1)dw ? How do I find the integral ∫dxx2(x−1)2 ? How do I find the integral ∫x3+4x2+4dx ? See all questions in Integral by Partial Fractions Impact of this question 1410 views around the world You can reuse this answer Creative Commons License