How do you integrate 4x23(x1)2 using partial fractions?

1 Answer
May 12, 2016

4x23(x1)2dx=43ln(x1)43(x1)+c

Explanation:

Let us first find partial fractions of 4x23(x1)2 and for this let

4x2(x1)2Ax1+B(x1)2 or

4x2(x1)2A(x1)+B(x1)2=Ax+BA(x1)2

Hence A=4 and BA=2 i.e. B=42=2

Hence 4x23(x1)2dx=13[2x1+2(x1)2]dx

= 232x1dx+232(x1)2dx+k

= 43ln(x1)43(x1)+c