Set up the equation to solve for the variables A, B,C
int (4x^2+6x-2)/((x-1)(x+1)^2) dx=int (A/(x-1 )+B/(x+1)+C/(x+1)^2)dx∫4x2+6x−2(x−1)(x+1)2dx=∫(Ax−1+Bx+1+C(x+1)2)dx
Let us solve for A, B, C first
(4x^2+6x-2)/((x-1)(x+1)^2) =A/(x-1 )+B/(x+1)+C/(x+1)^24x2+6x−2(x−1)(x+1)2=Ax−1+Bx+1+C(x+1)2
LCD =(x-1)(x+1)^2=(x−1)(x+1)2
(4x^2+6x-2)/((x-1)(x+1)^2) =(A(x+1)^2+B(x^2-1)+C(x-1))/((x-1)(x+1)^2)4x2+6x−2(x−1)(x+1)2=A(x+1)2+B(x2−1)+C(x−1)(x−1)(x+1)2
Simplify
(4x^2+6x-2)/((x-1)(x+1)^2) =(A(x^2+2x+1)+B(x^2-1)+C(x-1))/((x-1)(x+1)^2)4x2+6x−2(x−1)(x+1)2=A(x2+2x+1)+B(x2−1)+C(x−1)(x−1)(x+1)2
(4x^2+6x-2)/((x-1)(x+1)^2) =(Ax^2+2Ax+A+Bx^2-B+Cx-C)/((x-1)(x+1)^2)4x2+6x−2(x−1)(x+1)2=Ax2+2Ax+A+Bx2−B+Cx−C(x−1)(x+1)2
Rearrange the terms of the right side
(4x^2+6x-2)/((x-1)(x+1)^2) =(Ax^2+Bx^2+2Ax+Cx+A-B-C)/((x-1)(x+1)^2)4x2+6x−2(x−1)(x+1)2=Ax2+Bx2+2Ax+Cx+A−B−C(x−1)(x+1)2
let us set up the equations to solve for A, B, C by matching the numerical coefficients of left and right terms
A+B=4" "A+B=4 first equation
2A+C=6" "2A+C=6 second equation
A-B-C=-2" "A−B−C=−2 third equation
Simultaneous solution using second and third equation results to
2A+A+C-C-B=6-22A+A+C−C−B=6−2
3A-B=4" "3A−B=4 fourth equation
Using now the first and the fourth equations
3A-B=4" "3A−B=4 fourth equation
3(4-B)-B=4" "3(4−B)−B=4 fourth equation
12-3B-B=412−3B−B=4
-4B=4-12−4B=4−12
-4B=-8−4B=−8
B=2B=2
Solve for A using 3A-B=4" "3A−B=4 fourth equation
3A-2=4" "3A−2=4 fourth equation
3A=4+23A=4+2
3A=63A=6
A=2A=2
Solve C using the 2A+C=6" "2A+C=6 second equation and A=2A=2 and B=2B=2
2A+C=6" "2A+C=6 second equation
2(2)+C=62(2)+C=6
4+C=64+C=6
C=6-4C=6−4
C=2C=2
We now perform our integration
int (4x^2+6x-2)/((x-1)(x+1)^2) dx=int (2/(x-1 )+2/(x+1)+2/(x+1)^2)dx∫4x2+6x−2(x−1)(x+1)2dx=∫(2x−1+2x+1+2(x+1)2)dx
int (4x^2+6x-2)/((x-1)(x+1)^2) dx=int (2/(x-1 )+2/(x+1)+2*(x+1)^(-2))dx∫4x2+6x−2(x−1)(x+1)2dx=∫(2x−1+2x+1+2⋅(x+1)−2)dx
int (4x^2+6x-2)/((x-1)(x+1)^2) dx=2ln(x-1 )+2ln(x+1)+(2*(x+1)^(-2+1))/(-2+1)+C_o∫4x2+6x−2(x−1)(x+1)2dx=2ln(x−1)+2ln(x+1)+2⋅(x+1)−2+1−2+1+Co
int (4x^2+6x-2)/((x-1)(x+1)^2) dx=2ln(x-1 )+2ln(x+1)-2/(x+1)+C_o∫4x2+6x−2(x−1)(x+1)2dx=2ln(x−1)+2ln(x+1)−2x+1+Co
God bless.....I hope the explanation is useful.