How do you integrate int (4x^2 - 7x - 12) / ((x) (x+2) (x-3))4x27x12(x)(x+2)(x3) using partial fractions?

1 Answer
Mar 10, 2018

2ln absx +9/5lnabs(x+2)+1/5lnabs(x-3)+ C2ln|x|+95ln|x+2|+15ln|x3|+C

Explanation:

(4x^2-7x-12)/((x)(x+2)(x-3))=A/x+B/(x+2)+C/(x-3)=4x27x12(x)(x+2)(x3)=Ax+Bx+2+Cx3=

=(A(x+2)(x-3)+B(x)(x-3)+C(x)(x+2))/((x)(x+2)(x-3))=A(x+2)(x3)+B(x)(x3)+C(x)(x+2)(x)(x+2)(x3)
then:

A(x^2-x-6)+B(x^2-3x)+C(x^2+2x)=4x^2-7x-12A(x2x6)+B(x23x)+C(x2+2x)=4x27x12

cons. x=0 x=0 then A(-6)+B(0)+C(0)=-12 rArr A=2A(6)+B(0)+C(0)=12A=2

x^2-x-6=0rArrx_1=3and x_2=-2x2x6=0x1=3andx2=2

cons. x=-2 x=2 then A(0)+B(10)+C(0)=18 rArr B=9/5A(0)+B(10)+C(0)=18B=95

cons. x=3 x=3 then A(0)+B(0)+C(15)=3 rArr C=1/5A(0)+B(0)+C(15)=3C=15

finally get to:

(4x^2-7x-12)/((x)(x+2)(x-3))=2/x+9/(5(x+2))+1/(5(x-3))4x27x12(x)(x+2)(x3)=2x+95(x+2)+15(x3)

then:

int(4x^2-7x-12)/((x)(x+2)(x-3))dx=int(2/x+9/(5(x+2))+1/(5(x-3)))dx=int2/xdx+int9/(5(x+2))dx+int1/(5(x-3))dx=4x27x12(x)(x+2)(x3)dx=(2x+95(x+2)+15(x3))dx=2xdx+95(x+2)dx+15(x3)dx=

2ln absx +9/5lnabs(x+2)+1/5lnabs(x-3)+ C2ln|x|+95ln|x+2|+15ln|x3|+C