How do you integrate int (4x^3 + 12x^2 - x - 4 )/( 4x^2 - 1) using partial fractions?

1 Answer
Dec 12, 2016

The answer is =x^2/2+3x+1/4ln(∣2x+1∣)-1/4ln(∣2x-1∣)+C

Explanation:

We use a^2-b^2=(a+b)(a-b)

intx^ndx=x^(n+1)/(n+1) and intdx/x=∣x∣

Let's do a long division

color(white)(aaaa)4x^3-x+12x^2-4color(white)(aaaa)4x^2-1

color(white)(aaaa)4x^3-xcolor(white)(aaaaaaaaaaaaaa)x+3

color(white)(aaaaaa)0 -0+12x^2-4

color(white)(aaaaaaaaaaa)+12x^2-3

color(white)(aaaaaaaaaaaaaa)+0-1

So,

(4x^3-x+12x^2-4)/(4x^2-1)=x+3-1/(4x^2-1)

=x+3-1/((2x+1)(2x-1))

Let's do the decomposition into partial fractions

1/((2x+1)(2x-1))=A/(2x+1)+B/(2x-1)

=(A(2x-1)+B(2x+1))/((2x+1)(2x-1))

Therefore,

1=A(2x-1)+B(2x+1)

Let x=1/2,=>,1=2B, =>, B=1/2

Let x=-1/2,=>,1=-2A, =>, A=-1/2

So,

(4x^3-x+12x^2-4)/(4x^2-1)=x+3-((-1/2)/(2x+1)+(1/2)/(2x-1))

int((4x^3-x+12x^2-4)dx)/(4x^2-1)=int(x+3)dx+1/2int(dx)/(2x+1)-1/2int(dx)/(2x-1)

=x^2/2+3x+1/4ln(∣2x+1∣)-1/4ln(∣2x-1∣)+C