We use a^2-b^2=(a+b)(a-b)
intx^ndx=x^(n+1)/(n+1) and intdx/x=∣x∣
Let's do a long division
color(white)(aaaa)4x^3-x+12x^2-4color(white)(aaaa)∣4x^2-1
color(white)(aaaa)4x^3-xcolor(white)(aaaaaaaaaaaaaa)∣x+3
color(white)(aaaaaa)0 -0+12x^2-4
color(white)(aaaaaaaaaaa)+12x^2-3
color(white)(aaaaaaaaaaaaaa)+0-1
So,
(4x^3-x+12x^2-4)/(4x^2-1)=x+3-1/(4x^2-1)
=x+3-1/((2x+1)(2x-1))
Let's do the decomposition into partial fractions
1/((2x+1)(2x-1))=A/(2x+1)+B/(2x-1)
=(A(2x-1)+B(2x+1))/((2x+1)(2x-1))
Therefore,
1=A(2x-1)+B(2x+1)
Let x=1/2,=>,1=2B, =>, B=1/2
Let x=-1/2,=>,1=-2A, =>, A=-1/2
So,
(4x^3-x+12x^2-4)/(4x^2-1)=x+3-((-1/2)/(2x+1)+(1/2)/(2x-1))
int((4x^3-x+12x^2-4)dx)/(4x^2-1)=int(x+3)dx+1/2int(dx)/(2x+1)-1/2int(dx)/(2x-1)
=x^2/2+3x+1/4ln(∣2x+1∣)-1/4ln(∣2x-1∣)+C