How do you integrate int (5x^3+2x^2-12x-8)/(x^4-8x^2+16) dx5x3+2x212x8x48x2+16dx using partial fractions?

1 Answer
Dec 4, 2016

The answer is =1/(x+2)+2ln(∣x+2∣)-1/(x-2)+3ln(∣x-2∣)+C=1x+2+2ln(x+2)1x2+3ln(x2)+C

Explanation:

We use,

(a-b)^2=a^2-2ab+b^2(ab)2=a22ab+b2

and a^2-b^2=(a+b)(a-b)a2b2=(a+b)(ab)

to factorise the denominator

x^4-8x^2+16=(x^2-4)^2x48x2+16=(x24)2

=(x+2)^2(x-2)^2=(x+2)2(x2)2

So,

(5x^3+2x^2-12x-8)/(x^4-8x^2+16)=(5x^3+2x^2-12x-8)/((x+2)^2(x-2)^2)5x3+2x212x8x48x2+16=5x3+2x212x8(x+2)2(x2)2

=A/(x+2)^2+B/(x+2)+C/(x-2)^2+D/(x-2)=A(x+2)2+Bx+2+C(x2)2+Dx2

=(A(x-2)^2+B(x+2)(x-2)^2+C(x+2)^2+D(x-2)(x+2)^2)/((x+2)^2(x-2)^2)=A(x2)2+B(x+2)(x2)2+C(x+2)2+D(x2)(x+2)2(x+2)2(x2)2

So,

5x^3+2x^2-12x-8=A(x-2)^2+B(x+2)(x-2)^2+C(x+2)^2+D(x-2)(x+2)^25x3+2x212x8=A(x2)2+B(x+2)(x2)2+C(x+2)2+D(x2)(x+2)2

Let x=2x=2, =>, 16=16C16=16C, =>, C=1C=1

Let x=-2x=2, =>, -16=16A16=16A, =>, A=-1A=1

Coefficients of x^3x3, 5=B+D5=B+D

And -8=4A+8B+4C-8D8=4A+8B+4C8D

-8=-4+8B+4-8D8=4+8B+48D

-8=8B-8D8=8B8D

B-D=-1BD=1

So, B=2B=2 and D=3D=3

int((5x^3+2x^2-12x-8)dx)/(x^4-8x^2+16)(5x3+2x212x8)dxx48x2+16

==int(-1dx)/(x+2)^2+int(2dx)/(x+2)+int(1dx)/(x-2)^2+int(3dx)/(x-2)==1dx(x+2)2+2dxx+2+1dx(x2)2+3dxx2

=1/(x+2)+2ln(∣x+2∣)-1/(x-2)+3ln(∣x-2∣)+C=1x+2+2ln(x+2)1x2+3ln(x2)+C