How do you integrate int (5x)/((x-1)(x+3))5x(x1)(x+3) using partial fractions?

1 Answer
Nov 11, 2016

The answer is =5/4ln(x-1)+15/4ln(x+3)+C=54ln(x1)+154ln(x+3)+C

Explanation:

First, let's do the decomposition into partial fractions,
(5x)/((x-1)(x+3))=A/(x-1)+B/(x+3)5x(x1)(x+3)=Ax1+Bx+3

=((x+3)+B(x-1))/((x-1)(x+3))=(x+3)+B(x1)(x1)(x+3)

:. 5x=A(x+3)+B(x-1)
Let x=-3=>-15=-4B=>B=15/4

Let x=1=>5=4A=>A=5/4

(5x)/((x-1)(x+3))=(5/4)/(x-1)+(15/4)/(x+3)

So, int(5xdx)/((x-1)(x+3))=int(5/4dx)/(x-1)+int(15/4dx)/(x+3)

=5/4ln(x-1)+15/4ln(x+3)+C