How do you integrate int (6-15x)/( (x-1) (x+2) (x-4))615x(x1)(x+2)(x4) using partial fractions?

1 Answer

color(red)(int (6-15x)/((x-1)(x+2)(x-4)) dx=)615x(x1)(x+2)(x4)dx=

color(red)(ln(x-1)+2ln(x+2)-3ln(x-4)+C_0)ln(x1)+2ln(x+2)3ln(x4)+C0

Explanation:

from the given integral, set up the equation using the variables A, B, and C

int (6-15x)/((x-1)(x+2)(x-4)) dx=int(A/(x-1)+B/(x+2)+C/(x-4))dx615x(x1)(x+2)(x4)dx=(Ax1+Bx+2+Cx4)dx

(6-15x)/((x-1)(x+2)(x-4))=A/(x-1)+B/(x+2)+C/(x-4)615x(x1)(x+2)(x4)=Ax1+Bx+2+Cx4

(6-15x)/((x-1)(x+2)(x-4))=(A(x^2-2x-8)+B(x^2-5x+4)+C(x^2+x-2))/((x-1)(x+2)(x-4))615x(x1)(x+2)(x4)=A(x22x8)+B(x25x+4)+C(x2+x2)(x1)(x+2)(x4)

(6-15x)/((x-1)(x+2)(x-4))615x(x1)(x+2)(x4)
=((A+B+C)x^2+(-2A-5B+C)x^1+(-8A+4B-2C)x^0)/((x-1)(x+2)(x-4))=(A+B+C)x2+(2A5B+C)x1+(8A+4B2C)x0(x1)(x+2)(x4)

The equations will be

A+B+C=0A+B+C=0
-2A-5B+C=-152A5B+C=15
-8A+4B-2C=68A+4B2C=6

Simultaneous solution results to:

A=1A=1 and B=2B=2 and C=-3C=3

final answer

color(red)(int (6-15x)/((x-1)(x+2)(x-4)) dx=)615x(x1)(x+2)(x4)dx=

color(red)(ln(x-1)+2ln(x+2)-3ln(x-4)+C_0)ln(x1)+2ln(x+2)3ln(x4)+C0

God bless....I hope the explanation is useful.