(6x+5)/(x+2)^4 = A/((x+2)) + B/(x+2)^2 +C/(x+2)^3 +D/(x+2)^4 6x+5(x+2)4=A(x+2)+B(x+2)2+C(x+2)3+D(x+2)4
A(x+2)^3 + B(x+2)^2 +C(x+2) + D = 6x+5A(x+2)3+B(x+2)2+C(x+2)+D=6x+5
Ax^3 = 0x^3 rArr A=0Ax3=0x3⇒A=0
Bx^2 = 0x^2 rArr B=0Bx2=0x2⇒B=0
Cx = 6x rArr C=6Cx=6x⇒C=6
2C+D=5 and C=6 rArr D=-72C+D=5andC=6⇒D=−7
Now evaluate int(6(x+2)^-3 - 7(x+2)^-4) dx∫(6(x+2)−3−7(x+2)−4)dx to get
-2/(x+2)^2+7/(3(x+2)^3) + C−2(x+2)2+73(x+2)3+C