How do you integrate #int (6x+5) / (x+2) ^4# using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Jim H Mar 30, 2016 #int(6x+5)/(x+2)^4 dx = int (6/(x+2)^3-7/(x+2)^4)dx = -2/(x+2)^2+7/(3(x+2)^3) + C# Explanation: #(6x+5)/(x+2)^4 = A/((x+2)) + B/(x+2)^2 +C/(x+2)^3 +D/(x+2)^4 # #A(x+2)^3 + B(x+2)^2 +C(x+2) + D = 6x+5# #Ax^3 = 0x^3 rArr A=0# #Bx^2 = 0x^2 rArr B=0# #Cx = 6x rArr C=6# #2C+D=5 and C=6 rArr D=-7# Now evaluate #int(6(x+2)^-3 - 7(x+2)^-4) dx# to get #-2/(x+2)^2+7/(3(x+2)^3) + C# Answer link Related questions How do I find the partial fraction decomposition of #(2x)/((x+3)(3x+1))# ? How do I find the partial fraction decomposition of #(1)/(x^3+2x^2+x# ? How do I find the partial fraction decomposition of #(x^4+1)/(x^5+4x^3)# ? How do I find the partial fraction decomposition of #(x^4)/(x^4-1)# ? How do I find the partial fraction decomposition of #(t^4+t^2+1)/((t^2+1)(t^2+4)^2)# ? How do I find the integral #intt^2/(t+4)dt# ? How do I find the integral #int(x-9)/((x+5)(x-2))dx# ? How do I find the integral #int1/((w-4)(w+1))dw# ? How do I find the integral #intdx/(x^2(x-1)^2)# ? How do I find the integral #int(x^3+4)/(x^2+4)dx# ? See all questions in Integral by Partial Fractions Impact of this question 1298 views around the world You can reuse this answer Creative Commons License