How do you integrate int ( (dx) / ( x(x+1)^2 ) )(dxx(x+1)2) using partial fractions?

1 Answer
Nov 2, 2017

The partial fraction equation is:

1 /(x(x+1)^2) = A/x + B/(x+1)+C/(x+1)^21x(x+1)2=Ax+Bx+1+C(x+1)2

Multiply both sides by x(x+1)^2x(x+1)2

1 = A(x+1)^2 + Bx(x+1)+Cx1=A(x+1)2+Bx(x+1)+Cx

Eliminate B and C by Letting x = 0x=0:

1 = A(0+1)^21=A(0+1)2

A = 1A=1

1 = (x+1)^2 + Bx(x+1)+Cx1=(x+1)2+Bx(x+1)+Cx

Eliminate B by letting x = -1x=1

1 = C(-1)1=C(1)

C = -1C=1

1 = (x+1)^2 + Bx(x+1)-x1=(x+1)2+Bx(x+1)x

Let x = 1x=1:

1 = (1+1)^2 + B(1)(1+1)-11=(1+1)2+B(1)(1+1)1

2-4 = 2B24=2B

B = -1B=1

The partial fraction expansion is:

1 /(x(x+1)^2) = 1/x -1/(x+1)-1/(x+1)^21x(x+1)2=1x1x+11(x+1)2

Check:

1/x -1/(x+1)-1/(x+1)^2 = 1/x(x+1)^2/(x+1)^2-1/(x+1)(x(x+1))/(x(x+1)) - 1/(x+1)^2 x/x1x1x+11(x+1)2=1x(x+1)2(x+1)21x+1x(x+1)x(x+1)1(x+1)2xx

1/x -1/(x+1)-1/(x+1)^2 = (x^2+ 2x +1-x^2-x -x)/(x(x+1)^2)1x1x+11(x+1)2=x2+2x+1x2xxx(x+1)2

1/x -1/(x+1)-1/(x+1)^2 = 1/(x(x+1)^2)1x1x+11(x+1)2=1x(x+1)2

This checks.

The original integrand is equal to the partial fractions:

int ( (dx) / ( x(x+1)^2 ) ) = int 1/x -1/(x+1)-1/(x+1)^2 dx(dxx(x+1)2)=1x1x+11(x+1)2dx

Separate into 3 integrals:

int ( (dx) / ( x(x+1)^2 ) ) = int 1/x dx - int 1/(x+1) dx - int 1/(x+1)^2 dx(dxx(x+1)2)=1xdx1x+1dx1(x+1)2dx

These integrals are well known:

int ( (dx) / ( x(x+1)^2 ) ) = ln|x| - ln|x+1| + 1/(x+1) + C(dxx(x+1)2)=ln|x|ln|x+1|+1x+1+C