How do you integrate s(s+6)(s+3)(s2+6s+18) using partial fractions?

1 Answer
Dec 19, 2016

The answer is ==ln(s+3)+ln(s2+6s+18)+C

Explanation:

Let's do the decomposition into partial fractions

s(s+6)(s+3)(s2+6s+18)=As+3+Bs+Cs2+6s+18

=A(s2+6s+18)+(Bs+C)(x+3)(s+3)(s2+6s+18)

So

s(s+6)=A(s2+6s+18)+(Bs+C)(s+3)

Let s=0, , 0=18A+3C, , C=6A

Let s=3, , 9=9A, , A=1

Coefficients of s2, , 1=A+B, , B=2

Therefore,

s(s+6)(s+3)(s2+6s+18)=1s+3+2s+6s2+6s+18

s(s+6)ds(s+3)(s2+6s+18)=dss+3+(2s+6)dss2+6s+18

=ln(s+3)+ln(s2+6s+18)+C