How do you integrate x13x214x+15 using partial fractions?

1 Answer
Dec 4, 2016

The answer is =16ln(3x5)+12ln(x3)+C

Explanation:

Let's factorise the denominator

3x214x+15=(3x5)(x3)

So, the decomposition into partial fractions are

x13x214x+15=x1(3x5)(x3)=A3x5+Bx3

=A(x3)+B(3x5)(3x5)(x3)

So, (x1)=A(x3)+B(3x5)

Let x=3, , 2=4B, , B=12

Let x=53, , 23=4A3, ,A=12

so,

x13x214x+15=123x5+12x3

(x1)dx3x214x+15=(12)dx3x5+(12)dxx3

=12ln(3x5)3+12ln(x3)+C

=16ln(3x5)+12ln(x3)+C