How do you integrate int(x+1)/((x+5)(x+3)(x+4))x+1(x+5)(x+3)(x+4) using partial fractions?

1 Answer
Jun 16, 2017

The answer is =-2ln|(x+5)|-ln|(x+3)|+3ln|(x+4)|+C=2ln|(x+5)|ln|(x+3)|+3ln|(x+4)|+C

Explanation:

Let's perform the decomposition into partial fractions

(x+1)/((x+5)(x+3)(x+4))=A/(x+5)+B/(x+3)+C/(x+4)x+1(x+5)(x+3)(x+4)=Ax+5+Bx+3+Cx+4

=(A(x+3)(x+4)+B(x+5)(x+4)+C(x+5)(x+3))/((x+5)(x+3)(x+4))=A(x+3)(x+4)+B(x+5)(x+4)+C(x+5)(x+3)(x+5)(x+3)(x+4)

The denominators are the same, we compare the numerators

(x+1)=(A(x+3)(x+4)+B(x+5)(x+4)+C(x+5)(x+3))(x+1)=(A(x+3)(x+4)+B(x+5)(x+4)+C(x+5)(x+3))

Let x=-5x=5, =>,

-4=-2*-1*A4=21A, =>, A=-2A=2

Let x=-3x=3, =>,

-2=2*1*B2=21B, =>, B=-1B=1

Let x=-4x=4, =>,

-3=1*-1*C3=11C, =>, C=3C=3

So,

(x+1)/((x+5)(x+3)(x+4))=-2/(x+5)-1/(x+3)+3/(x+4)x+1(x+5)(x+3)(x+4)=2x+51x+3+3x+4

int((x+1)dx)/((x+5)(x+3)(x+4))=-2intdx/(x+5)-1intdx/(x+3)+3intdx/(x+4)(x+1)dx(x+5)(x+3)(x+4)=2dxx+51dxx+3+3dxx+4

=-2ln|(x+5)|-ln|(x+3)|+3ln|(x+4)|+C=2ln|(x+5)|ln|(x+3)|+3ln|(x+4)|+C