How do you integrate int(x+1)/((x+5)(x+6)(x-1))x+1(x+5)(x+6)(x1) using partial fractions?

1 Answer
Oct 9, 2016

int(x+1)/((x+5)(x+6)(x-1))dx = 2/3ln|x+5| - 5/7 ln|x+6|+1/21 ln|x-1| + cx+1(x+5)(x+6)(x1)dx=23ln|x+5|57ln|x+6|+121ln|x1|+c

Explanation:

We first expand the given expression into partial fractions:

(x+1)/((x+5)(x+6)(x-1)) -= A/(x+5)+B/(x+6)+C/(x-1)x+1(x+5)(x+6)(x1)Ax+5+Bx+6+Cx1
(x+1)/((x+5)(x+6)(x-1)) -= (A(x+6)(x-1) + B(x+5)(x-1) + C(x+5)(x+6))/((x+5)(x+6)(x-1))x+1(x+5)(x+6)(x1)A(x+6)(x1)+B(x+5)(x1)+C(x+5)(x+6)(x+5)(x+6)(x1)

And so. (x+1) -= A(x+6)(x-1) + B(x+5)(x-1) + C(x+5)(x+6))(x+1)A(x+6)(x1)+B(x+5)(x1)+C(x+5)(x+6))

Put x=-5=>-5+1=A(-5+6)(-5-1)+0+0x=55+1=A(5+6)(51)+0+0
:. (1)(-6)A=-4=>A=2/3

Put x=-6=>-6+1=0+B(-6+5)(-6-1)+0
:. (-1)(-7)A=-5=>B=-5/7

Put x=1=>1+1=0+0+C(1+5)(1+6)
:. (6)(7)C=2=>C=1/21

So the partial fraction decomposition is:
(x+1)/((x+5)(x+6)(x-1)) -= 2/(3(x+5))-5/(7(x+6))+1/(21(x-1))

We now want to integrate; so
int(x+1)/((x+5)(x+6)(x-1))dx = int(2/(3(x+5))-5/(7(x+6))+1/(21(x-1)))dx
int(x+1)/((x+5)(x+6)(x-1))dx = 2/3int1/(x+5)dx - 5/7 int1/(x+6)dx+1/21 int 1/(x-1)dx

int(x+1)/((x+5)(x+6)(x-1))dx = 2/3ln|x+5| - 5/7 ln|x+6|+1/21 ln|x-1| + c