How do you integrate x+1(x9)(x+8)(x2) using partial fractions?

1 Answer
Jul 10, 2017

The answer is =10119ln(|x9|)7170ln(|x+8|)370ln(|x2|)+C

Explanation:

Let's perform the decomposition into partial fractions

x+1(x9)(x+8)(x2)=Ax9+Bx+8+Cx2

=A(x2)(x+8)+B(x9)(x2)+C(x9)(x+8)(x9)(x+8)(x2)

The denominator is the same, we compare the numerator.

x+1=A(x2)(x+8)+B(x9)(x2)+C(x9)(x+8)

Let x=9, , 10=177A, , A=10119

Let x=8, , 7=1710B, , B=7170

Let x=2, , 3=710C, , C=370

Therefore,

x+1(x9)(x+8)(x2)=10119x97170x+8370x2

(x+1)dx(x9)(x+8)(x2)=10119dxx97170dxx+8370dxx2

=10119ln(|x9|)7170ln(|x+8|)370ln(|x2|)+C