How do you integrate x21(x)(x2+1) using partial fractions?

1 Answer
Oct 18, 2016

=ln(x2+1x)+C

Explanation:

x21x(x2+1)=Ax+Bx+Cx2+1
Developing
x21x(x2+1)=A(x2+1)+x(Bx+C)x(x2+1)
So we can compare the coefficients
x21=A(x2+1)+x(Bx+C)
For x2 , 1=A+B and 1=A and 0=C
Hence A=1and B=2
(x21)dxx(x2+1)=Adxx+(Bx+C)dxx2+1
=1dxx+(2x)dxx2+1
=lnx+ln(x2+1)+C
=ln(x2+1x)+C