How do you integrate x22x+3(x+3)(x1)(x+3)dx using partial fractions?

1 Answer

(x22x+3)dx(x+3)(x1)(x+3)=

92x+3+78ln(x+3)+18ln(x1)+C

Explanation:

x22x+3(x+3)(x1)(x+3)=A(x+3)2+Bx+3+Cx1

Use LCD =(x+3)2(x1), this is the denominator

x22x+3(x+3)2(x1)=A(x1)+B(x+3)(x1)+C(x+3)2(x+3)2(x1)

x22x+3(x+3)2(x1)=AxA+Bx2+2Bx3B+Cx2+6Cx+9C(x+3)2(x1)

the equations are

B+C=1
A+2B+6C=2
A3B+9C=3

Simultaneous solution results to

A=92
B=78
C=18

x22x+3(x+3)(x1)(x+3)=A(x+3)2+Bx+3+Cx1

x22x+3(x+3)(x1)(x+3)=92(x+3)2+78x+3+18x1

Let us now integrate

(x22x+3)dx(x+3)(x1)(x+3)=

92dx(x+3)2+78dxx+3+18dxx1

(x22x+3)dx(x+3)(x1)(x+3)=

92x+3+78ln(x+3)+18ln(x1)+C

God bless...I hope the explanation is useful.