How do you integrate int (x^2+2x)/((x^2+1)^2) dxx2+2x(x2+1)2dx using partial fractions?

1 Answer
Oct 11, 2016

int(x^2 + 2x)/(x^2 + 1)^2dx = - 1/2((x+ 2)/(x^2 + 1) - tan^-1(x)) + Cx2+2x(x2+1)2dx=12(x+2x2+1tan1(x))+C

Explanation:

Compute the partial fractions:

(x^2 + 2x)/(x^2 + 1)^2 = (Ax + B)/(x^2 + 1)^2 + C/(x^2 + 1)x2+2x(x2+1)2=Ax+B(x2+1)2+Cx2+1

x^2 + 2x = Ax + B + C(x^2 + 1)x2+2x=Ax+B+C(x2+1)

Let x = 0x=0:

B + C = 0B+C=0

Let x = 1:

A + B + 2C = 3A+B+2C=3

Let x = -1:

-A + B + 2C = -1A+B+2C=1

Write the equation, A + B + 2C = 3A+B+2C=3, in the first row of an augmented matrix:

[ (1, 1 , 2 , | , 3) ]

Add the row for B + C = 0:

[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0) ]

Add the row for -A + B + 2C = -1:

[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0), (-1, 1 , 2 , | , -1) ]

Add row 1 to row 3:

[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0), (0, 2 , 4 , | , 2) ]

Divide row 3 by 2:

[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0), (0, 1 , 2 , | , 1) ]

Subtract row 2 from row 3:

[ (1, 1 , 2 , | , 3), (0, 1 , 1 , | , 0), (0, 0 , 1 , | , 1) ]

Subtract row 3 from row 2:

[ (1, 1 , 2 , | , 3), (0, 1 , 0 , | , -1), (0, 0 , 1 , | , 1) ]

Subtract row 2 from row 1:

[ (1, 0 , 2 , | , 4), (0, 1 , 0 , | , -1), (0, 0 , 1 , | , 1) ]

Multiply row 3 by -2 and add to row 1:

[ (1, 0 , 0 , | , 2), (0, 1 , 0 , | , -1), (0, 0 , 1 , | , 1) ]

A = 2, B = -1, C = 1

(x^2 + 2x)/(x^2 + 1)^2 = (2x)/(x^2 + 1)^2 - 1/(x^2 + 1)^2 + 1/(x^2 + 1)

int(x^2 + 2x)/(x^2 + 1)^2dx = int(2x)/(x^2 + 1)^2dx - int1/(x^2 + 1)^2dx + int1/(x^2 + 1)dx

let u = x² + 1, du = 2xdx, intu^(-2)du = -u^-1

int(x^2 + 2x)/(x^2 + 1)^2dx = -1/(x^2 + 1) - int1/(x^2 + 1)^2dx + int1/(x^2 + 1)dx

The third integral is our old friend the inverse tangent:

int(x^2 + 2x)/(x^2 + 1)^2dx = -1/(x^2 + 1) - int1/(x^2 + 1)^2dx + tan^-1(x)

For the middle term I used wolframalpha

int(x^2 + 2x)/(x^2 + 1)^2dx = -1/(x^2 + 1) - 1/2(x/(x^2 + 1) + tan^-1(x)) + tan^-1(x) + C

int(x^2 + 2x)/(x^2 + 1)^2dx = - 1/2((x+ 2)/(x^2 + 1) + tan^-1(x)) + tan^-1(x) + C

int(x^2 + 2x)/(x^2 + 1)^2dx = - 1/2((x+ 2)/(x^2 + 1) - tan^-1(x)) + C