How do you integrate int (x^2 - 8x + 44) / ((x + 2) (x - 2)^2) using partial fractions?

1 Answer
Jul 11, 2017

I decomposed integrand into basic fractions,

(x^2-8x+44)/((x+2)*(x-2)^2)=A/(x+2)+B/(x-2)+C/(x-2)^2

(x^2-8x+44)=A*(x-2)^2+B*(x^2-4)+C*(x+2)

(x^2-8x+44)=A*(x^2-4x+4)+B*(x^2-4)+C*(x+2)

(x^2-8x+44)=(A+B)*x^2+(-4A+C)*x+(4A-4B+2C)

After equating coefficients, I found A+B=1, -4A+C=-8 and 4A-4B+2C=44 equations,

After solving system of them simultaneously, I found;

A=4, B=-3 and C=8.

Thus,

int(x^2-8x+44)/((x+2)*(x-2)^2)dx

=int4(dx)/(x+2)-int3(dx)/(x-2)+int8(dx)/(x-2)^2

=4Ln(|x+2|)-3Ln(|x-2|)-8/(x-2)+C

Explanation:

I decomposed integrand into basic fractions.