How do you integrate int (x^2+x+1)/(1-x^2)x2+x+11x2 using partial fractions?

1 Answer
Aug 2, 2017

The answer is =-x+1/2ln(|x+1|)-3/2ln(|x-1|)+C=x+12ln(|x+1|)32ln(|x1|)+C

Explanation:

Let's simplify the quotient

(x^2+x+1)/(1-x^2)=(x^2+x+1)/(-x^2+1)=(-x^2-x-1)/(x^2-1)x2+x+11x2=x2+x+1x2+1=x2x1x21

=-1+(-x-2)/(x^2-1)=-1-(x+2)/(x^2-1)=1+x2x21=1x+2x21

Now, we perform the decomposition into partial fractions

(x+2)/(x^2-1)=A/(x+1)+B/(x-1)=(A(x-1)+B(x+1))/((x-1)(x+1))x+2x21=Ax+1+Bx1=A(x1)+B(x+1)(x1)(x+1)

The numerators are the same. we compare the numerators

x+2=A(x-1)+B(x+1))x+2=A(x1)+B(x+1))

Let x=1x=1, =>, 3=2B3=2B, =>, B=3/2B=32

Let x=-1x=1, =>, 1=-2A1=2A, =>, A=-1/2A=12

Therefore,

(x^2+x+1)/(1-x^2)=-1+(1/2)/(x+1)-(3/2)/(x-1)x2+x+11x2=1+12x+132x1

int((x^2+x+1)dx)/(1-x^2)=int-1dx+int(1/2dx)/(x+1)-int(3/2dx)/(x-1)(x2+x+1)dx1x2=1dx+12dxx+132dxx1

=-x+1/2ln(|x+1|)-3/2ln(|x-1|)+C=x+12ln(|x+1|)32ln(|x1|)+C