How do you integrate int x^2/ (x^2+x+4)x2x2+x+4 using partial fractions?

1 Answer
Jun 3, 2018

I=x-1/2ln|x^2+x+4|-7/sqrt15 tan^-1((2x+1)/sqrt15)+cI=x12lnx2+x+4715tan1(2x+115)+c

Explanation:

We know that,

color(red)((1)int(d(f(x)))/f(x) =ln|f(x)|+c(1)d(f(x))f(x)=ln|f(x)|+c

color(blue)((2)int1/(x^2+a^2)dx=1/atan^-1(x/a)+c(2)1x2+a2dx=1atan1(xa)+c

Here,

I=intx^2/(x^2+x+4)dxI=x2x2+x+4dx

=int((x^2+x+4)-(x+4))/(x^2+x+4)dx=(x2+x+4)(x+4)x2+x+4dx

=int(1-(x+4)/(x^2+x+4))dx=(1x+4x2+x+4)dx

=int1dx-1/2int(2x+8)/(x^2+x+4)dx=1dx122x+8x2+x+4dx

=x-1/2int((2x+1)+7)/(x^2+x+4)dx=x12(2x+1)+7x2+x+4dx

=x-1/2int(2x+1)/(x^2+x+4)dx-1/2int7/(x^2+x+4)dx=x122x+1x2+x+4dx127x2+x+4dx

=x-1/2int(color(red)(d(x^2+x+4))/color(red)((x^2+x+4)))dx- 7/2int1/(x^2+x+1/4+15/4)dx=x12(d(x2+x+4)(x2+x+4))dx721x2+x+14+154dx

=x-1/2color(red)(ln|x^2+x+4|)-7/2color(blue)(int 1/((x+1/2)^2+ (sqrt15/2)^2)dx=x12lnx2+x+4721(x+12)2+(152)2dx

=x-1/2ln|x^2+x+4|-7/2*color(blue)(1/(sqrt15/2) tan^-1((x+1/2)/(sqrt15/2)))+c=x12lnx2+x+4721152tan1x+12152+c

=x-1/2ln|x^2+x+4|-7/sqrt15 tan^-1((2x+1)/sqrt15)+c=x12lnx2+x+4715tan1(2x+115)+c