How do you integrate x+2(x2+x+7)(x+1) using partial fractions?

1 Answer
Oct 23, 2016

(x+2)dx(x2+x+7)(x+1)=ln(x+1)7(114)ln(x2+x+7)(573)arctanx+12332+C

Explanation:

Let's do the partial fraction decomposition
x+2(x2+x+7)(x+1)=Ax+Bx2+x+7+Cx+1
=(Ax+B)(x+1)+C(x2+x+7)(x2+x+7)(x+1)

So x+2=(Ax+B)(x+1)+C(x2+x+7)
Let x=1 then 1=0+7C C=17
let x=0 then 2=B+7C 2=B+1 B=1
Coefficients of x2
0=A+C A=C=17
so the integral becomes

(x+2)dx(x2+x+7)(x+1)=((17)x+1)dxx2+x+7+(17)dxx+1

=dx7(x+1)(x7)dx7(x2+x+7)

dx7(x+1)=ln(x+1)7

(x7)dx7(x2+x+7)=xdx7(x2+x+7)dx(x2+x+7)

=(2x+1)dx14(x2+x+7)15dx14(x2+x+7)
(2x+1)dx14(x2+x+7)=(114)ln(x2+x+7))
Now remains 15dx14(x2+x+7)=1514dxx2+x+14+274
=1514dx((x+12)2)+274
=1514dx(x+12)2(332)2+1

=1514233arctanx+12332

=(573)arctanx+12332