How do you integrate #int ((x^3+1)/(x^2+3))# using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer maganbhai P. Mar 17, 2018 #I=x^2/2-3/2ln|x^2+3|+1/(sqrt(3))tan^-1(x/sqrt(3))+c# Explanation: Here, #(x^3+1)/(x^2+3)=(x^3+3x-3x+1)/(x^2+3)=(x^3+3x)/(x^2+3)-(3x)/(x^2+3)+1/(x^2+3)# #(x^3+1)/(x^2+3)=(x(x^2+3))/(x^2+3)-3/2*(2x)/(x^2+3)+1/(x^2+3)# #I=int(x^3+1)/(x^2+3)dx# #I=intxdx-3/2int(2x)/(x^2+3)dx+int1/(x^2+3)dx# #I=x^2/2-3/2int(d/(dx)(x^2+3))/(x^2+3)dx+int1/(x^2+(sqrt(3))^2)dx# #I=x^2/2-3/2ln|x^2+3|+1/(sqrt(3))tan^-1(x/sqrt(3))+c# Answer link Related questions How do I find the partial fraction decomposition of #(2x)/((x+3)(3x+1))# ? How do I find the partial fraction decomposition of #(1)/(x^3+2x^2+x# ? How do I find the partial fraction decomposition of #(x^4+1)/(x^5+4x^3)# ? How do I find the partial fraction decomposition of #(x^4)/(x^4-1)# ? How do I find the partial fraction decomposition of #(t^4+t^2+1)/((t^2+1)(t^2+4)^2)# ? How do I find the integral #intt^2/(t+4)dt# ? How do I find the integral #int(x-9)/((x+5)(x-2))dx# ? How do I find the integral #int1/((w-4)(w+1))dw# ? How do I find the integral #intdx/(x^2(x-1)^2)# ? How do I find the integral #int(x^3+4)/(x^2+4)dx# ? See all questions in Integral by Partial Fractions Impact of this question 1228 views around the world You can reuse this answer Creative Commons License