How do you integrate int ((x^3+1)/(x^2+3))(x3+1x2+3) using partial fractions?

1 Answer
Mar 17, 2018

I=x^2/2-3/2ln|x^2+3|+1/(sqrt(3))tan^-1(x/sqrt(3))+cI=x2232lnx2+3+13tan1(x3)+c

Explanation:

Here,
(x^3+1)/(x^2+3)=(x^3+3x-3x+1)/(x^2+3)=(x^3+3x)/(x^2+3)-(3x)/(x^2+3)+1/(x^2+3)x3+1x2+3=x3+3x3x+1x2+3=x3+3xx2+33xx2+3+1x2+3
(x^3+1)/(x^2+3)=(x(x^2+3))/(x^2+3)-3/2*(2x)/(x^2+3)+1/(x^2+3)x3+1x2+3=x(x2+3)x2+3322xx2+3+1x2+3
I=int(x^3+1)/(x^2+3)dxI=x3+1x2+3dx
I=intxdx-3/2int(2x)/(x^2+3)dx+int1/(x^2+3)dxI=xdx322xx2+3dx+1x2+3dx
I=x^2/2-3/2int(d/(dx)(x^2+3))/(x^2+3)dx+int1/(x^2+(sqrt(3))^2)dxI=x2232ddx(x2+3)x2+3dx+1x2+(3)2dx
I=x^2/2-3/2ln|x^2+3|+1/(sqrt(3))tan^-1(x/sqrt(3))+cI=x2232lnx2+3+13tan1(x3)+c