How do you integrate int(x^3+1)/((x^2-4)(x^2+1)) dxx3+1(x24)(x2+1)dx using partial fractions?

1 Answer
May 12, 2017

int(x^3+1)/((x^2-4)(x^2+1))x3+1(x24)(x2+1)

= 9/20ln|x-2|+7/20ln|x+2|+1/10ln|x^2+1|+1/5tan^(-1)x920ln|x2|+720ln|x+2|+110lnx2+1+15tan1x

Explanation:

As (x^3+1)/((x^2-4)(x^2+1))=(x^3+1)/((x-2)(x+2)(x^2+1))x3+1(x24)(x2+1)=x3+1(x2)(x+2)(x2+1)

Let (x^3+1)/((x^2-4)(x^2+1))=A/(x-2)+B/(x+2)+(Cx+D)/(x^2+1)x3+1(x24)(x2+1)=Ax2+Bx+2+Cx+Dx2+1

or (x^3+1)=A(x+2)(x^2+1)+B(x-2)(x^2+1)+(Cx+D)(x+2)(x-2)(x3+1)=A(x+2)(x2+1)+B(x2)(x2+1)+(Cx+D)(x+2)(x2)

when x=2x=2 we have 9=20A9=20A i.e. A=9/20A=920

when x=-2x=2 we have -7=-20B7=20B i.e. B=7/20B=720

Comparing coefficients of x^3x3 and constant term we get

1=A+B+C1=A+B+C i.e. C=1-A-B=1-9/20-7/20=4/20=1/5C=1AB=1920720=420=15

and 1=2A-2B-4D1=2A2B4D i.e. D=-(1-18/20+14/20)/4=1/5D=11820+14204=15

Hence (x^3+1)/((x^2-4)(x^2+1))=9/(20(x-2))+7/(20(x+2))+(x+1)/(5(x^2+1))x3+1(x24)(x2+1)=920(x2)+720(x+2)+x+15(x2+1) and

int(x^3+1)/((x^2-4)(x^2+1))dxx3+1(x24)(x2+1)dx

= int9/(20(x-2))dx+int7/(20(x+2))dx+int(x+1)/(5(x^2+1))dx920(x2)dx+720(x+2)dx+x+15(x2+1)dx

= 9/20ln|x-2|+7/20ln|x+2|+1/5(1/2int(2x)/(x^2+1)dx+int1/(x^2+1)dx)920ln|x2|+720ln|x+2|+15(122xx2+1dx+1x2+1dx)

= 9/20ln|x-2|+7/20ln|x+2|+1/10ln|x^2+1|+1/5tan^(-1)x920ln|x2|+720ln|x+2|+110lnx2+1+15tan1x