How do you integrate int (x^3+x^2+2x+1)/((x^2+1)(x^2+2)) dx∫x3+x2+2x+1(x2+1)(x2+2)dx using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Frederico Guizini S. Apr 6, 2017 See the answer below: Answer link Related questions How do I find the partial fraction decomposition of (2x)/((x+3)(3x+1))2x(x+3)(3x+1) ? How do I find the partial fraction decomposition of (1)/(x^3+2x^2+x1x3+2x2+x ? How do I find the partial fraction decomposition of (x^4+1)/(x^5+4x^3)x4+1x5+4x3 ? How do I find the partial fraction decomposition of (x^4)/(x^4-1)x4x4−1 ? How do I find the partial fraction decomposition of (t^4+t^2+1)/((t^2+1)(t^2+4)^2)t4+t2+1(t2+1)(t2+4)2 ? How do I find the integral intt^2/(t+4)dt∫t2t+4dt ? How do I find the integral int(x-9)/((x+5)(x-2))dx∫x−9(x+5)(x−2)dx ? How do I find the integral int1/((w-4)(w+1))dw∫1(w−4)(w+1)dw ? How do I find the integral intdx/(x^2(x-1)^2)∫dxx2(x−1)2 ? How do I find the integral int(x^3+4)/(x^2+4)dx∫x3+4x2+4dx ? See all questions in Integral by Partial Fractions Impact of this question 8021 views around the world You can reuse this answer Creative Commons License