How do you integrate ∫x3−x2(x+3)4 using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Roy E. Jan 18, 2017 ln|x+3|+10x+3−332(x+3)2+12(x+3)3+c Explanation: Let u=x+3, dudx=1. ∫(u−3)3−(u−3)2u4du =∫u3−10u2+33u−36u4du =∫u−1−10u−2+33u−3−36u−4dx =ln|u|+10u−332u2+12u3+c Answer link Related questions How do I find the partial fraction decomposition of 2x(x+3)(3x+1) ? How do I find the partial fraction decomposition of 1x3+2x2+x ? How do I find the partial fraction decomposition of x4+1x5+4x3 ? How do I find the partial fraction decomposition of x4x4−1 ? How do I find the partial fraction decomposition of t4+t2+1(t2+1)(t2+4)2 ? How do I find the integral ∫t2t+4dt ? How do I find the integral ∫x−9(x+5)(x−2)dx ? How do I find the integral ∫1(w−4)(w+1)dw ? How do I find the integral ∫dxx2(x−1)2 ? How do I find the integral ∫x3+4x2+4dx ? See all questions in Integral by Partial Fractions Impact of this question 1616 views around the world You can reuse this answer Creative Commons License