How do you integrate int (x-3x^2)/((x-7)(x-5)(x+4)) x3x2(x7)(x5)(x+4) using partial fractions?

1 Answer
Sep 4, 2016

int (x-3x^2)/((x-7)(x-5)(x+4)) dxx3x2(x7)(x5)(x+4)dx

= -70/11 ln abs(x-7)+35/9 ln abs(x-5)-52/99 ln abs(x+4) + C=7011ln|x7|+359ln|x5|5299ln|x+4|+C

Explanation:

(x-3x^2)/((x-7)(x-5)(x+4)) = A/(x-7)+B/(x-5)+C/(x+4)x3x2(x7)(x5)(x+4)=Ax7+Bx5+Cx+4

Using Heaviside's cover up method, we find:

A = ((7)-3(7)^2)/(((7)-5)((7)+4)) = (7-147)/(2*11) = -140/22 = -70/11A=(7)3(7)2((7)5)((7)+4)=7147211=14022=7011

B = ((5)-3(5)^2)/(((5)-7)((5)+4)) = (5-75)/((-2)*9) = (-70)/(-18) = 35/9B=(5)3(5)2((5)7)((5)+4)=575(2)9=7018=359

C = ((-4)-3(-4)^2)/(((-4)-7)((-4)-5)) = (-4-48)/((-11)(-9)) = -52/99C=(4)3(4)2((4)7)((4)5)=448(11)(9)=5299

So:

int (x-3x^2)/((x-7)(x-5)(x+4)) dxx3x2(x7)(x5)(x+4)dx

= int -70/(11(x-7))+35/(9(x-5))-52/(99(x+4)) dx=7011(x7)+359(x5)5299(x+4)dx

= -70/11 ln abs(x-7)+35/9 ln abs(x-5)-52/99 ln abs(x+4) + C=7011ln|x7|+359ln|x5|5299ln|x+4|+C

(Note: The CC here stands for the integration constant, not the coefficient we calculated).