How do you integrate int (x+4) / [(x-1)(x^2+4)]∫x+4(x−1)(x2+4) using partial fractions?
1 Answer
Nov 23, 2016
Explanation:
The Partial fraction decomposition of the integrand will be of the form;
(x+4)/((x-1)(x^2+4)) -= A/(x-1) + (Bx+C)/(x^2+4) x+4(x−1)(x2+4)≡Ax−1+Bx+Cx2+4
:. (x+4)/((x-1)(x^2+4)) = (A(x^2+4) + (Bx+C)(x-1))/((x-1)(x^2+4))
:. (x+4) -= A(x^2+4) + (Bx+C)(x-1)
Put
Put
Compare coefficients of
Hence:
And so,
int (x+4)/((x-1)(x^2+4)) = int 1/(x-1) - int x/(x^2+4)
:. int (x+4)/((x-1)(x^2+4)) = int 1/(x-1) - 1/2int (2x)/(x^2+4)
:. int (x+4)/((x-1)(x^2+4)) = ln|x-1| - 1/2ln(x^2+4) +c