How do you integrate int (x+4) / [(x-1)(x^2+4)]x+4(x1)(x2+4) using partial fractions?

1 Answer
Nov 23, 2016

int (x+4)/((x-1)(x^2+4)) = ln|x-1| - 1/2ln(x^2+4) +c x+4(x1)(x2+4)=ln|x1|12ln(x2+4)+c

Explanation:

The Partial fraction decomposition of the integrand will be of the form;

(x+4)/((x-1)(x^2+4)) -= A/(x-1) + (Bx+C)/(x^2+4) x+4(x1)(x2+4)Ax1+Bx+Cx2+4
:. (x+4)/((x-1)(x^2+4)) = (A(x^2+4) + (Bx+C)(x-1))/((x-1)(x^2+4))
:. (x+4) -= A(x^2+4) + (Bx+C)(x-1)

Put x=1 => 5 = A(1+4) +0
:. 5A=5 => A=1

Put x=0 => 4=4A+(C)(-1)
:. C=4-4= 0

Compare coefficients of x^2 => 0 = A+B
:. B=-1

Hence:
(x+4)/((x-1)(x^2+4)) = 1/(x-1) -x/(x^2+4)

And so,

int (x+4)/((x-1)(x^2+4)) = int 1/(x-1) - int x/(x^2+4)
:. int (x+4)/((x-1)(x^2+4)) = int 1/(x-1) - 1/2int (2x)/(x^2+4)
:. int (x+4)/((x-1)(x^2+4)) = ln|x-1| - 1/2ln(x^2+4) +c