How do you integrate int (x+4)/(x^2 + 2x + 5)dxx+4x2+2x+5dx using partial fractions?

1 Answer
Apr 1, 2016

1/2[ln|x^2+2x+5|+3arctan((x+1)/2)]+c12[lnx2+2x+5+3arctan(x+12)]+c

Explanation:

First split the integral into two parts:

x+1x+1 is a scalable factor of the derivative of x^2+2x+5x2+2x+5, so divide x+4x+4 by x+1x+1

int(x+4)/(x^2+2x+5)dx=int(x+1)/(x^2+2x+5)dx+int3/(x^2+2x+5)dxx+4x2+2x+5dx=x+1x2+2x+5dx+3x2+2x+5dx

Algebraic manipulation yields:
1/2int(2x+2)/(x^2+2x+5)dx+3int1/((x+1)^2+4)dx122x+2x2+2x+5dx+31(x+1)2+4dx
=1/2ln|x^2+2x+5|+3/2arctan((x+1)/2)+c=12lnx2+2x+5+32arctan(x+12)+c
=1/2[ln|x^2+2x+5|+3arctan((x+1)/2)]+c=12[lnx2+2x+5+3arctan(x+12)]+c