How do you integrate int ( x-5)/(x-2)^2x5(x2)2 using partial fractions?

1 Answer
Nov 2, 2016

The answer is =ln(x-2)+3/(x-1)+C=ln(x2)+3x1+C

Explanation:

Let's start with the decomposition of the partial fractions
=(A+B(x-2))/(x-2)^2=A+B(x2)(x2)2
:. x-5=A+B(x-2)
Coefficients of x B=1
and -5=A-2B=>A=-3
(x-5)/(x-2)^2=-3/(x-2)^2+1/(x-2)
So int((x-5)dx)/(x-2)^2=intdx/(x-2)-int(3dx)/(x-2)^2
=ln(x-2)+3/(x-1)+C