"We want to find:"
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx.
"Taking a quick second look, multiplying out the numerator,"
"we see:"
\qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ int \ { x^2 + 2 x}/{ x^3 + 3 x^2 - 4 } \ dx.
"Observing the derivative of the denominator:" \qquad 3 x^2 + 6 x,
"which just happens to be proportional to numerator:" \ \ x^2 + 2 x,
"[this situation is a rare accident -- but welcome], we can finish"
"directly as:"
\qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ int \ { x^2 + 2 x }/{ x^3 + 3 x^2 - 4 } \ dx.
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { 3 ( x^2 + 2 x ) }/{ x^3 + 3 x^2 - 4 } \ dx.
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { 3 x^2 + 6 x }/{ x^3 + 3 x^2 - 4 } \ dx.
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { ( x^3 + 3 x^2 - 4 )' }/{ x^3 + 3 x^2 - 4 } \ dx.
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 ln | x^3 + 3 x^2 - 4 | + C.
"Thus:"
\qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ 1/3 ln | x^3 + 3 x^2 - 4 | + C.