How do you integrate int(x(x+2))/(x^3 +3x^2 -4) dxx(x+2)x3+3x24dx?

2 Answers
Mar 6, 2018

1/3 ln|x-1|+ 2/3 ln|x+2|+C13ln|x1|+23ln|x+2|+C

Explanation:

Let us begin by factorizing the denominator. It is easy to see that x^3+3x^2-4x3+3x24 vanishes when x=1x=1, so that (x-1)(x1) is a factor.

x^3+3x^2-4 = x^3-x^2+4x^2-4x+4x-4 x3+3x24=x3x2+4x24x+4x4
= x^2(x-1)+4x(x-1)+4(x-1) = (x-1)(x^2+4x+4) = (x-1)(x+2)^2=x2(x1)+4x(x1)+4(x1)=(x1)(x2+4x+4)=(x1)(x+2)2

Thus, the integrand simplifies considerably to

{x(x+2)}/{x^3+3x^2-4} = {x(x+2)}/{(x-1)(x+2)^2} = x/{(x-1)(x+2)}x(x+2)x3+3x24=x(x+2)(x1)(x+2)2=x(x1)(x+2)

We try the partial fraction expression

x/{(x-1)(x+2)} = A/{x-1}+B/{x+2}x(x1)(x+2)=Ax1+Bx+2

Thus
x = A(x+2) +B(x-1)x=A(x+2)+B(x1)

substituting x=1x=1 and x=-2x=2, respectively, gives

1 = A times 3 implies A =1/3, -2 = B times (-3) implies B=2/31=A×3A=13,2=B×(3)B=23

Thus

x/{(x-1)(x+2)} = 1/3 1/{x-1}+2/3 1/{x+2}x(x1)(x+2)=131x1+231x+2

Finally

int {x(x+2)}/{x^3+3x^2-4} dx = int ( 1/3 1/{x-1}+2/3 1/{x+2}) dxx(x+2)x3+3x24dx=(131x1+231x+2)dx
qquad = 1/3 ln|x-1|+ 2/3 ln|x+2|+C

Mar 6, 2018

\qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ 1/3 ln | x^3 + 3 x^2 - 4 | + C.

Explanation:

"We want to find:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx.

"Taking a quick second look, multiplying out the numerator,"
"we see:"

\qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ int \ { x^2 + 2 x}/{ x^3 + 3 x^2 - 4 } \ dx.

"Observing the derivative of the denominator:" \qquad 3 x^2 + 6 x,
"which just happens to be proportional to numerator:" \ \ x^2 + 2 x,
"[this situation is a rare accident -- but welcome], we can finish"
"directly as:"

\qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ int \ { x^2 + 2 x }/{ x^3 + 3 x^2 - 4 } \ dx.

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { 3 ( x^2 + 2 x ) }/{ x^3 + 3 x^2 - 4 } \ dx.

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { 3 x^2 + 6 x }/{ x^3 + 3 x^2 - 4 } \ dx.

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { ( x^3 + 3 x^2 - 4 )' }/{ x^3 + 3 x^2 - 4 } \ dx.

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 ln | x^3 + 3 x^2 - 4 | + C.

"Thus:"

\qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ 1/3 ln | x^3 + 3 x^2 - 4 | + C.