How do you integrate int(x)/((x+3)(x+6)(x+2))x(x+3)(x+6)(x+2) using partial fractions?

1 Answer
Nov 29, 2016

int x/((x+3)(x+6)(x+2)) dx= ln|x+3| - 1/2ln|x+6| - 1/2ln|x+2| + Cx(x+3)(x+6)(x+2)dx=ln|x+3|12ln|x+6|12ln|x+2|+C

Explanation:

The Partial Fraction decomposition of the integrand will be of the form:

x/((x+3)(x+6)(x+2)) -= A/(x+3) + B/(x+6) + C/(x+2) x(x+3)(x+6)(x+2)Ax+3+Bx+6+Cx+2
:. x/((x+3)(x+6)(x+2)) = (A(x+6)(x+2) + B(x+3)(x+2) + C(x+3)(x+6))/((x+3)(x+6)(x+2))
:. x = A(x+6)(x+2) + B(x+3)(x+2) + C(x+3)(x+6)

Put { (x=-3, =>-3=A(3)(-1), => A=1), (x=-6,=>-6=B(-3)(-4),=>B=-1/2),(x=-2,=>-2=C(1)(4),=>C=-1/2) :}

Hence,

x/((x+3)(x+6)(x+2)) -= 1/(x+3) - 1/(2(x+6)) - 1/(2(x+2))

So,

int x/((x+3)(x+6)(x+2)) dx= int 1/(x+3) - 1/(2(x+6)) - 1/(2(x+2)) dx
:. int x/((x+3)(x+6)(x+2)) dx= ln|x+3| - 1/2ln|x+6| - 1/2ln|x+2| + C