How do you integrate int(x)/((x+3)(x+6)(x+2))∫x(x+3)(x+6)(x+2) using partial fractions?
1 Answer
Nov 29, 2016
Explanation:
The Partial Fraction decomposition of the integrand will be of the form:
x/((x+3)(x+6)(x+2)) -= A/(x+3) + B/(x+6) + C/(x+2) x(x+3)(x+6)(x+2)≡Ax+3+Bx+6+Cx+2
:. x/((x+3)(x+6)(x+2)) = (A(x+6)(x+2) + B(x+3)(x+2) + C(x+3)(x+6))/((x+3)(x+6)(x+2))
:. x = A(x+6)(x+2) + B(x+3)(x+2) + C(x+3)(x+6)
Put
Hence,
x/((x+3)(x+6)(x+2)) -= 1/(x+3) - 1/(2(x+6)) - 1/(2(x+2))
So,
int x/((x+3)(x+6)(x+2)) dx= int 1/(x+3) - 1/(2(x+6)) - 1/(2(x+2)) dx
:. int x/((x+3)(x+6)(x+2)) dx= ln|x+3| - 1/2ln|x+6| - 1/2ln|x+2| + C